教育行业A股IPO第一股(股票代码 003032)

全国咨询/投诉热线:400-618-4000

Python培训:怎样理解迁移学习?

更新时间:2022年10月14日18时25分 来源:传智教育 浏览次数:

预训练模型(Pretrained model):

一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型. 在NLP领域,预训练模型往往是语言模型,因为语言模型的训练是无监督的,可以获得大规模语料,同时语言模型又是许多典型NLP任务的基础,如机器翻译,文本生成,阅读理解等,常见的预训练模型有BERT, GPT, roBERTa, transformer-XL等.

微调(Fine-tuning):

根据给定的预训练模型,改变它的部分参数或者为其新增部分输出结构后,通过在小部分数据集上训练,来使整个模型更好的适应特定任务.

微调脚本(Fine-tuning script):

实现微调过程的代码文件。这些脚本文件中,应包括对预训练模型的调用,对微调参数的选定以及对微调结构的更改等,同时,因为微调是一个训练过程,它同样需要一些超参数的设定,以及损失函数和优化器的选取等, 因此微调脚本往往也包含了整个迁移学习的过程.

关于微调脚本的说明:

一般情况下,微调脚本应该由不同的任务类型开发者自己编写,但是由于目前研究的NLP任务类型(分类,提取,生成)以及对应的微调输出结构都是有限的,有些微调方式已经在很多数据集上被验证是有效的,因此微调脚本也可以使用已经完成的规范脚本.

两种迁移方式:

直接使用预训练模型,进行相同任务的处理,不需要调整参数或模型结构,这些模型开箱即用。但是这种情况一般只适用于普适任务, 如:fasttest工具包中预训练的词向量模型。另外,很多预训练模型开发者为了达到开箱即用的效果,将模型结构分各个部分保存为不同的预训练模型,提供对应的加载方法来完成特定目标.

更加主流的迁移学习方式是发挥预训练模型特征抽象的能力,然后再通过微调的方式,通过训练更新小部分参数以此来适应不同的任务。这种迁移方式需要提供小部分的标注数据来进行监督学习.

关于迁移方式的说明:

直接使用预训练模型的方式, 已经在fasttext的词向量迁移中学习. 接下来的迁移学习实践将主要讲解通过微调的方式进行迁移学习.

0 分享到:
和我们在线交谈!